Innovate for the industry of tomorrow

Industry is changing

There are many technologies that revolve around industry 4.0 and mechanical engineering . Most of them are digital, hence its significant impact.

This impact concerns:

  • the  possibility  of  connecting  everything  to  collect  data,  there  is  a  notion  of  IOT  ( Internet of Things but not only…)
  • the  development  of  decentralized  infrastructures  (we  are  talking  about “cloudification”)
  • data analysis such as machine learning.​
  • A number of technologies now represent an evolution within the industry.

This is the case in the possibilities offered by electronic integration, cobotics, virtual, augmented reality, ​gamma ray NDT​, etc…   Finally,  technological  disruptions  are  unfolding. 

We  can mention the combination of  artificial intelligence and vision systems, new cognitive interfaces, blockchain…   Some of them, such as additive manufacturing, should really revolutionize the industrial  world  and  the  by  the  end  making  easier  the  maintenance  of  industrial  robots​, by for some time with impressive evolution of technos and ​mechanical engineering​.

We address the subject in a pragmatic way focused on 2 fundamental aspects: 

  • The customer’s need (or the usage)
  • Our  market  segment  approach  associated  with  our  customers’  processes’ knowledge

Actemium's plan of the future is real. 

We  can  apply  our  ​mechanical  engineering  approach  to  the  plant  of  the  future  in  4  aspects:

  • One directly linked to the production tool, ‘Process’
  • One related to the interface between man and the ‘HMI’ process.
  • One related to connectivity and data exchange, ‘Connected’
  • And  finally,  the  ‘Data  usage’  relating  to  the  use  of  the data to extract added value from it.

This to address the five main drivers/issues of the industry of the future: 

  • Quality, with a need to move up the range, 
  • Reliability,  the  key  of  an  efficient  (and  safe)  production, ​the apogee of mechanical engineering. 
  • Productivity, forever better competitiveness 
  • Flexibility, to be able to adapt to demand and produce at will, ​thanks to the industrial automation.
  • Sustainability, which includes environmental aspects

This will permit to create a solution or service corresponding to a customer need, by integrating  the  best  technologies  of  the  moment,  ​such  as  Gamma  ray  NDT  (  non  destructive testing).  

Building  the  factory  of  the  future  does  not  mean  a  complete  overhaul  of  industrial  sites…

Quite the opposite first, thanks to the in-depth knowledge of the processes, and the contribution of new skills, the ability to optimize the performance of the installations, in  particular  in  terms  of  reliability  and  productivity. 

Ramp-up  is  also  the  implementation of LEAN manufacturing methods, proven for 25 years and boosted today by digital technology. It is also the adaptation of the existing system to make it more  flexible.  ​

Indeed,  mechanical  engineering,  maintenance  of  industrial  robots,  industrial maintenance or industrial automation will be deeply transformed through this  approach of adaptability. And it is finally a more and more widespread approach  to the reuse of existing means of production.  

Technologies bring new perspectives, for example in the field of ​industrial robots and gamma ray NDT​. Cobots allow the operator to interact and work in collaborative mode. 
Embedded  robotics  offers  autonomy  for  many  tasks  (including  construction  and  public works), it’s the very concept of ​Industrial automation. 

The  increase  in  computing  power  associated  with  artificial  intelligence  leads  to the  automatic qualification of defects in the ​NDT​ domain. 

However,  disruptive  technologies  could  change  the  way  things  are  done  ​within  the  mechanical engineering approach. 

Additive Manufacturing….. a real revolution is expected (or even in progress) thanks to the  new  modes  of  design  and  manufacture  of  products  allowed by all “3D printing”  technologies.

Artificial  intelligence,  associated  with  the  five  human  senses:  sight,  hearing,  smell,  touch and taste. 

Here’s  an  example  of  the  combination  of  computer  vision  and  embedded  cobot  to  create a Robot Aided Inspection solution. 

Thanks  to  it,  complex  industrial  setup  can  be  controlled  automatically  with  an  autonomous and flexible tool working with the digital mock-up of the setup to control.  ​This  process  will  allow  to  revolutionize  mechanical  engineering  and  make easier the maintenance of the industrial robots. 

Data is at the heart of the futuristic ​mechanical engineering industry​. 

Connectivity  is  essential  to  collect,  transport  and  store  data  before  analyzing  it  to  extract added value. 

Electronic  integration,  wireless  technologies,  cloud  infrastructures  are  opening  up  new horizons.This will making the ​maintenance of industrial robots easier and improving your production process. 

The main challenges of the industrial environment (OT: operational technology vs. IT) are:

  • Heterogeneity  of  data  sources:  A  lot  of  data  is  already  available  in  PLCs,  SCADA, MES, CMMS, ERP…. 
  • Interoperability: many types of communication protocols

Digital transformation leads to the development of: 

  • Storage infrastructures (cloud and/or on premise)
  • Decentralized data processing means.
  • Industrial automation

This leads to the convergence between the OT and IT worlds with a major challenge in terms of cybersecurity. 

All  this  leads  to  the  development  of  IOT  platforms  proposed  by  all  the  historical  manufacturers as well as by many new players. To be relevant, an IOT platform is supposed to cover the entire IT/OT value chain.  The customers are not all convinced by the implementation of this type of platform (difficult  to  implement,  incomplete solutions and for some of them not dedicated to  industry).

Knowing  how  to  contextualize  the  data  indicate  key  to  bring  true  value  and  helps  improve ​industrial automation as well as industrial maintenance. It  is  Actemium’s  added  value  to  be  able,  through  a  very  good  knowledge  of  the  process and the global industrial environment, to integrate mechanical and digital engineering  solutions  adapted to the customer’s needs and the use he can make of  them.

It  is  Actemium’s  added  value  to  be  able,  through  a  very  good  knowledge  of  the  process and the global industrial environment, to integrate mechanical and digital engineering  solutions  adapted to the customer’s needs and the use he can make of  them.

It  is  one  of  the  first  uses  of  data:  improving  energy  performance,  ​industrial  automation ​and the environment. 

Actemium’s  offer  dedicated  to  the  Energy  Transition,  based  on  the  customer  process, makes it possible to approach the subject in a pragmatic way by deploying a “Systemic Analysis” methodology.  
This  methodology  has  resulted  in  30%  savings  on  a  site’s  energy  bill,  ​making  maintenance of industrial robots way less consuming. 

Using data to improve performance

The use of data to improve industrial performance and ​industrial automation​: 

  • Production optimization
  • Quality
  • Reliability ​by improving the maintenance of industrial robots
  • Advanced scheduling planning

For one of our customer, a NL sugar producer (SUIKER UNIE), the continuous use and analysis of the data make it possible to determine the optimal time for sharpening the knives of  beet-root  cutters  (in  fact  large  beet  rappers  several  meters  high)  and  to  obtain  significant gains on the efficiency of the overall process (better efficiency ​of mechanical engineering​ – energy saving – optimization of labour and material costs).

After  three  decades,  preventive  ​maintenance  of  industrial  robots  methods  have  reached an asymptote while customer requirements are still increasing.

It is therefore  necessary  to  reinvent  maintenance,  for  example  by  using  data  to  move  from preventive ​industrial maintenance to predictive or even prescriptive maintenance (when data makes it possible to reduce failures and increase the overall efficiency rate). This process allows to save cost, time and improve reliability. 

The data boosts the prevention policy and its usage can be very relevant, especially in the maintenance of industrial robots and mechanical engineering concept. 

Protect  the  workforce  according  to  the  individual  risk  level  of  workers  and  their  environment. Real-time  managing  indicators  related  to  occupational  risks,  health,  workload  and  work efficiency such as ​LPS equipment (Lightning protection systems).  Anticipate the risks of accidents and professional diseases by understanding the root causes before and after their occurrence. 
We  now  see  the  possibility  of  digitizing work areas (Geo fencing), portable IOT’s for  biometric data, connected shoes to measure the loads carried by an operator. 

That’s our pragmatic approach to address and onboarding the industry into the future.